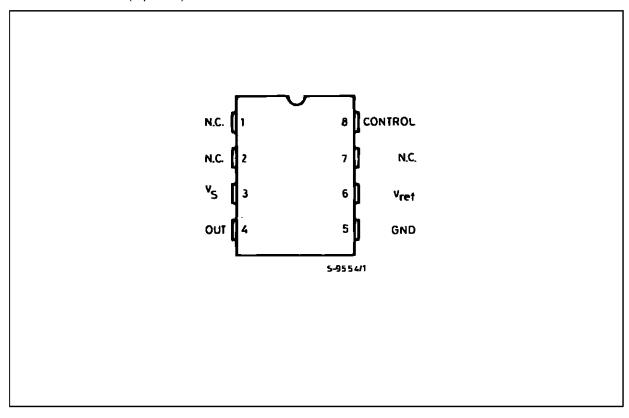
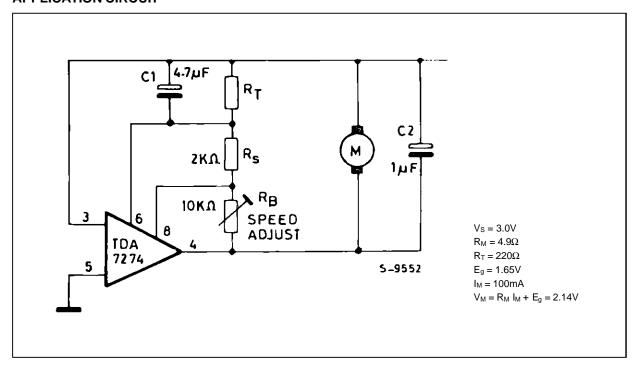


LOW-VOLTAGE DC MOTOR SPEED CONTROLLER


- WIDE OPERATING VOLTAGE RANGE (1.8 to 6 V)
- BUILT-IN LOW-VOLTAGE REFERENCE (0.2 V)
- LINEARITY IN SPEED ADJUSTMENT
- HIGH STABILITY VS. TEMPERATURE
- LOW NUMBER OF EXTERNAL PARTS

DESCRIPTION

The TDA7274 is a monolithic integrated circuit DC motor speed controller intended for use in microcassettes, radio cassette players and other consumer equipment. It is particulary suitable for low-voltage applications.



PIN CONNECTION (top view)

November 1988 1/10

APPLICATION CIRCUIT

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	6	V
IM	Motor Current	700	mA
P _{tot}	Power Dissipation at T _{amb} = 25°C	1.25	w

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th j-amb}	Thermal Resistance Junction-ambient Max.	100	°C/W

ELECTRICAL CHARACTERISTICS (Refer to test circuit, $V_S = 3V$, $T_{amb} = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Voltage Range		1.8		6	V
V _{ref}	Reference Voltage	I _M = 100mA	0.18	0.20	0.22	V
Iq	Quiescent Current			2.4	6.0	mA
I _d (Pin 6)	Quiescent Current			120		μА
К	Shunt Ratio	I _M = 100mA	45	50	55	_
V _{sat}	Residual Voltage	I _M = 100mA		0.13	0.3	V
$\frac{\Delta V_{ref}}{V_{ref}}/\Delta V_{S}$	Line Regulation	I _M = 100mA V _S = 1.8 to 6V		0.20		%/V
$\frac{\Delta K}{K}/\Delta V_S$	Voltage Characteristic of Shut Ratio	I _M = 100mA V _S = 1.8 to 6V		0.80		%/V
$\frac{\Delta V_{ref}}{V_{ref}}/\Delta I_{M}$	Load Regulation	I _M = 20 to 200mA		0.004		%/mA
$\frac{\Delta K}{K}/\Delta I_{M}$	Current Characteristic of Shut Ratio	I _M = 20 to 200mA		-0.03		%/mA
	Temperature Characteristic of Reference Voltage	I _M = 100mA Tamb = -20 to +60°C		0.04		%/°C
$\frac{\Delta K}{K}/\Delta T_{amb}$	Temperature Characteristic of Shut Ratio	I _M = 100mA Tamb = 20 to +60°C		0.02		%/°C

Figure 1 : Test Circuit.

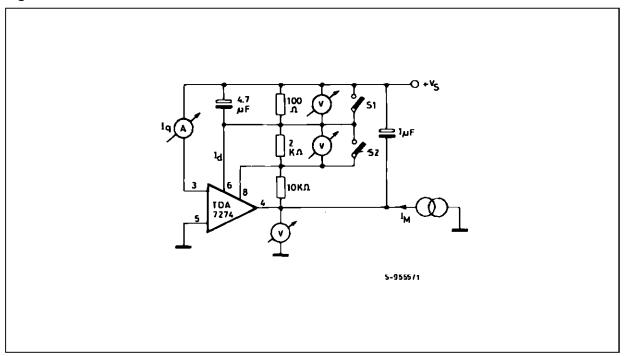
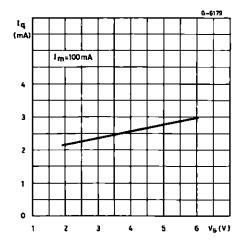



Figure 2 : Quiescent Current vs. Supply Voltage.

Figure 3: Reference Voltage vs. Supply Voltage.

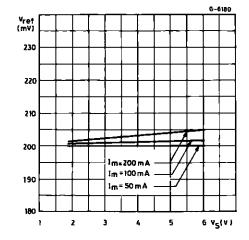


Figure 4: Shunt Ratio vs. Supply Voltage.

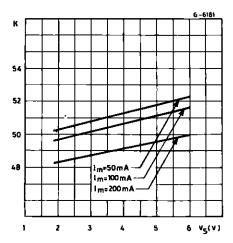


Figure 6: Shunt Ratio vs. Load Current.

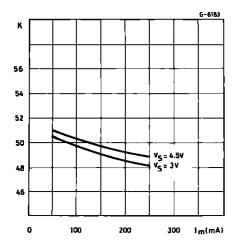
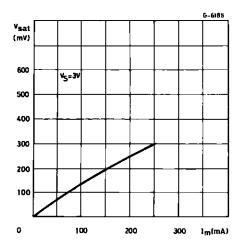
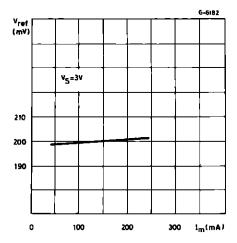
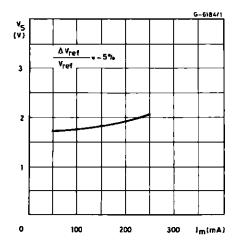


Figure 8: Saturation Voltage vs. Load Current.

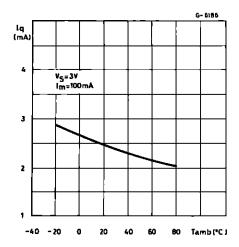

Figure 5: Reference Voltage vs. Load Current.

Figure 7: Minimum Supply Voltage (typical) vs. Load Current.

Figure 9: Quiescent Current vs. Ambient Temperature.

Figure 10: Reference Voltage vs. Ambient Temperature.

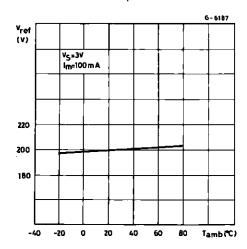


Figure 11: Application Circuit.

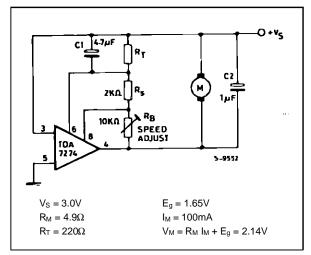


Figure 12: P. C. Board and Components layout of the Circuit of fig. 11 (1: 1 scale).

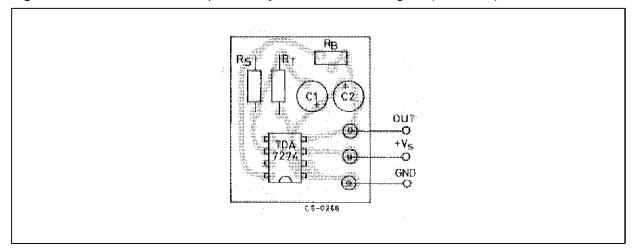


Figure 13: Speed Variations vs. Supply Voltage.

6-6188 (rpm)

10

10

10

10

10

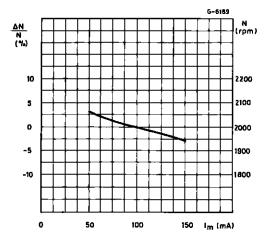
2200

2100

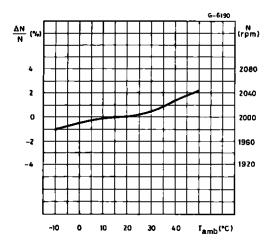
2000

-5

-10


-15

-20


0

1 2 3 4 5 6 V₅(V)

Figure 14: Speed Variations vs. Motor Current.

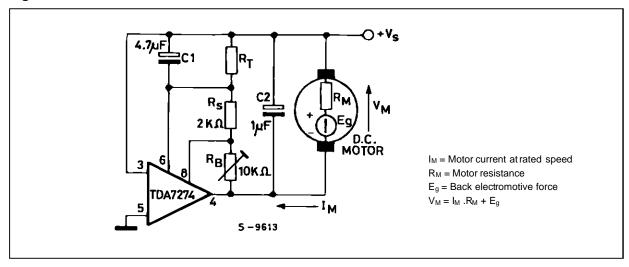


Figure 15: Speed Variations vs. Ambient Temperature.

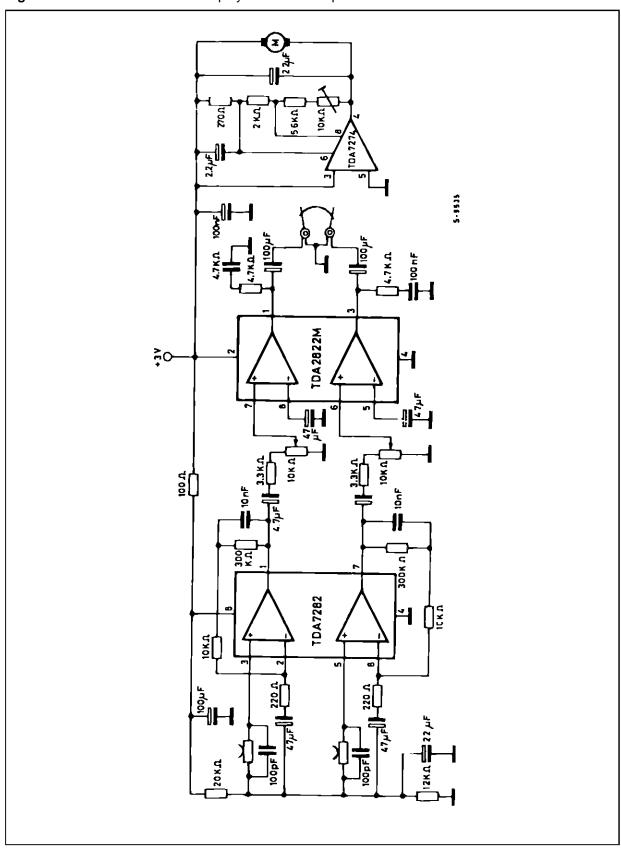
APPLICATION INFORMATION

Figure 16.

$$E_g = R_T I_d + I_M \left(\frac{R_T}{K} - R_M\right) + V_{ref}$$

$$\left[1 + \frac{R_B}{R_S} + \frac{R_T}{R_S} (1 + \frac{1}{K})\right]$$

 R_S has to be adjusted so that the applied voltage V_M is suitable for a given motor, the speed is then linearly adjustable varing R_B .


The value of R_T is calculated so that

$$R_{T \text{ (max.)}} < K_{\text{ (min.)}} \bullet R_{M \text{ (min.)}}$$

If $R_{T \text{ (max.)}} > K \bullet R_M$, instability may occur.

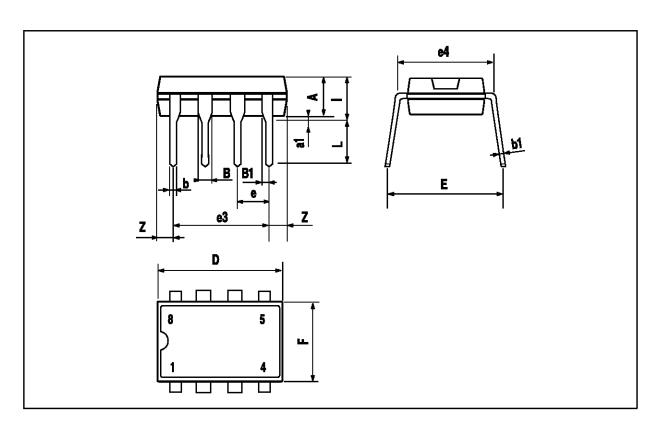

The values of C_1 (4.7 μF typ.) and C_2 (1 μF typ.) depend on the type of motor used. C_1 adjusts WOW and flutter of the system. C_2 suppresses motor spikes.

Figure 17: 3V Stereo Cassette Miniplayer with Motor Speed Control.

MINIDIP PACKAGE MECHANICAL DATA

DIM.		mm	inch			
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А		3.32			0.131	
a1	0.51			0.020		
В	1.15		1.65	0.045		0.065
b	0.356		0.55	0.014		0.022
b1	0.204		0.304	0.008		0.012
D			10.92			0.430
Е	7.95		9.75	0.313		0.384
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			6.6			0.260
I			5.08			0.200
L	3.18		3.81	0.125		0.150

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

 $\, \odot \,$ 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

